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variants in phosphosites and other protein sites, but it does not 
provide methods to automatically predict the impact of mutations 
on kinase binding. Thus, updated methods are needed to lever-
age rapidly increasing genomic and phosphoproteomic data to 
interpret variation in signaling networks.

We developed a method called mutation impact on phosphor-
ylation (MIMP) to predict the function of SNVs in phosphosites 
(Fig. 1a). MIMP is a machine learning method based on Bayesian 
statistics that builds on our previous analysis of phosphosite 
mutations11 (Supplementary Note). We collected 7,004 kinase-
associated phosphosite sequences from public databases12–14 and 
constructed position weight matrix (PWM) models of amino acid 
specificities of kinases. We modeled 124 high-confidence kinases 
with at least ten known phosphosites, including 99 serine-threonine  
kinases and 25 tyrosine kinases (Supplementary Data 1–3 and 
Supplementary Fig. 1). We compiled two further data sets: 58 
models of kinase families3 and 294 kinase models predicted from 
protein-protein interactions15, totaling 476 models of 322 kinases 
(Supplementary Note). We removed outlier sequences with an 
iterative model-refinement procedure and discarded models with 
substandard classifier performance (Fig. 1a, Supplementary  
Fig. 2 and 3 and Online Methods).

We quantify kinase-phosphosite interactions with the matrix 
similarity score (MSS) developed for DNA motifs16 (Online 
Methods). We computed MSSs for true positive binding sequences 
(P) and randomly sampled negative sequences (N) and applied 
model-based clustering17 to train Gaussian mixture models 
(GMMs) MP and MN for scores of each kinase. Phosphosites are 
classified with GMMs: a site is considered kinase bound if its 
score s is likely derived from the MP distribution and consid-
ered not kinase-bound if s is likely derived from MN. Binding 
is quantified with a Bayesian posterior probability P that com-
prises the likelihood of the score s derived from the distribution 
MP, as well as our prior belief in MN (Online Methods). Priors 
assign more confidence to kinases with higher-quality PWMs. 
We evaluate phosphorylation loss as the joint probability of the  
wild-type phosphosite sequence being kinase bound and the 
matched mutant sequence being unbound. Phosphorylation 
gain is evaluated analogously. We use a threshold of p > 0.5 for 
plausible rewiring hypotheses and maximum sensitivity, and we 
keep results with at least twofold change in wild-type and mutant 
scores. Method performance is tuned using these parameters.

We tested MIMP on 236,367 missense SNVs from The Cancer 
Genome Atlas (TCGA) pan-cancer data set of 3,185 cancer  
samples of 12 tumor types18 (Supplementary Data 4). We ana-
lyzed ~190,000 experimentally derived phosphosites from public 
databases12–14 (Supplementary Data 5) and found 37,996 pSNVs 
in the flanking sequences within seven residues of the sites. MIMP 
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interactions. mimP analyzes kinase sequence specificities and 
predicts whether snVs disrupt existing phosphorylation sites 
or create new sites. this helps discover mutations that modify 
protein function by altering kinase networks and provides 
insight into disease biology and therapy development.

Signaling networks mediate complex cellular logic, often via 
interactions of modular protein domains and short linear motifs1.  
The impact of genome variation on molecular interaction networks  
is difficult to predict in general; however, interactions involving 
short linear motifs2 are well known enough to tackle. A prominent 
example is protein phosphorylation, a post-translational modi-
fication (PTM) of serine, threonine or tyrosine residues. Human 
proteins are phosphorylated by over 500 kinases3 that bind motifs 
in flanking residues of modified sites. These motifs are inferred 
from networks of experimentally confirmed phosphorylation sites 
(phosphosites) and associated kinases. Phosphosites are evolu-
tionarily constrained in human genomes and enriched in cancer 
driver mutations and causal variants of inherited disease, indi-
cating their functional importance4,5. Phosphorylation-related 
SNVs (pSNVs) can disrupt existing phosphosites and create novel 
sites, rewiring kinase-substrate interactions and leading to disease 
phenotypes (Fig. 1a).

Earlier studies of disease mutations in kinase-binding sites6–10  
were limited to the analysis of mutations directly affecting 
the central phosphosite, whereas flanking sequence and the 
impact on kinase-specific phosphorylation was generally not  
considered6,7,10. Disease mutations were limited to few well-studied  
genes, resulting in static databases that have not kept pace with 
substantial growth in PTM data9,10. Methods to interpret muta-
tions in kinase-substrate phosphorylation were developed10,11, 
but no public tools are available for automated analysis. The 
PhosphoSitePlus database12 provides a useful list of genome 
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provides a functional hypothesis for 7,092 pSNVs that potentially 
disrupt 7,589 phosphosites in 4,355 genes, including a significant 
enrichment of cancer genes (Fig. 1b,c and Supplementary Fig. 4;  
n = 193, P = 3.2 × 10−13, Fisher’s exact test). We predict that muta-
tions induce 41,952 network-rewiring events, including 8,852 
phosphorylation gains and 33,100 losses (Supplementary Fig. 5,  
Supplementary Data 6 and Supplementary Discussion). Some 
pSNVs (n = 671; 9%) may cause phosphorylation switches by 
simultaneously disrupting existing phosphosites and introducing 
new sites (Fig. 1b). The most frequently mutated pSNV hotspots 
occur in cancer genes (TP53, n = 23 pSNVs; BRAF, n = 13;  
CTNNB1, n = 9), highlighting known19 and predicted driver 
mechanisms of cancer.

We used pathways and genomic data for validation. Enrichment 
analysis revealed abundant network-rewiring pSNVs in cancer-
related processes such as apoptosis, translation, cell cycle and 
DNA repair (Supplementary Fig. 6 and Online Methods; false 
discovery rate (FDR) P < 0.01, Poisson exact test). We investigated 
matched gene expression data from TCGA and cell component 
annotations from UniProt, as predictions of coexpressed and 
colocalized proteins are more likely valid. We found that 90% of 
kinase-substrate pairs show mRNA coexpression in corresponding  
tumor samples and that 63% co-occur in cellular compartments, 
significantly exceeding corresponding rates in random kinase-
substrate pairs (Supplementary Fig. 7; P < 1.8 × 10−3, Z-test). 
Thus, our predictions involve hallmark cancer processes and are 
likely compatible with cellular environment.

figure 1 | MIMP workflow and analysis.  
(a) MIMP workflow. (1) kinase sequence 
specificity models are constructed from known 
binding sites as position weight matrices and 
(2) refined iteratively. (3) Scores of known 
positive kinase-binding sites P and random 
negative sites N are modeled as Gaussian 
mixture distributions. Bayesian posterior 
probabilities are computed to classify sites as 
positives or negatives. (4) Cancer mutations  
are mapped to phosphosites. (5) Rewiring 
events are predicted by classifying matched 
wild-type and mutant sequences to alternate 
distributions. Phosphorylation loss is predicted 
if the joint probability ploss > 0.5 for the wild-
type sequence being a positive kinase- 
binding site and the mutant sequence being a 
negative site. Phosphorylation gain is  
predicted similarly. (b) Analysis of mutations 
from the TCGA pan-cancer data set reveals 
numerous SNVs with predicted phosphorylation 
gain (green), loss (purple) and switch  
(orange). (c) Kinase families with the most 
frequent network-rewiring mutations. Colors 
as in b. (d–f) Experimental validation of three 
SNVs with predicted phosphorylation loss. 
Kinase sequence specificity models with  
wild-type (WT) and mutant phosphosites  
are shown on the left. Names of substrates, 
associated kinases, and phosphorylated residues 
are shown on top of sequence logos. Mutated residues are indicated with red asterisks and red shading. Bar plots quantify in vitro kinase activity in 
counts per minute (c.p.m.) for two replicates of wild-type and mutant sequences as well as negative controls (blank). FDR-corrected P values were 
computed with the naive Bayes modified t-test23.

We experimentally tested 11 network-rewiring mutations (eight 
loss and three gain) of rewired kinases in five phosphosites of 
TP53, CTNNB1 and CLIP1, corresponding to most frequent 
pSNVs (Fig. 1d–f, Supplementary Table 1 and Supplementary 
Results). We exposed libraries of wild-type and mutated 
sequences to predicted kinase domains in vitro and quantified 
phosphorylation (Supplementary Table 1 and Online Methods). 
We confirmed ten cases (91%) with significantly altered kinase 
activity in mutated sequences relative to wild types (FDR P < 0.05, 
naive Bayes t-test; Supplementary Results and Supplementary 
Fig. 8). We propose that substitutions R213Q and R282W in TP53 
disrupt phosphorylation by aurora kinase B, leading to increased 
TP53 activity in mutated cancer samples in TCGA data (R282W, 
n = 23 samples; R213Q, n = 4; Supplementary Figs. 9 and 10). 
These phosphosites are associated with TP53 inhibition20,21. 
Thus, MIMP can detect functional mutations in kinase-binding 
sites and propose corresponding mechanisms.

MIMP is available as a user-friendly web server and R pack-
age (http://mimp.baderlab.org/). We aim to update data annually 
and extend MIMP to site-specific protein-protein interaction net-
works (14-3-3, SH3, SH2, PDZ22, WW) as well as protein-DNA 
and protein-RNA interaction networks of transcriptional regula-
tion and RNA splicing (Supplementary Discussion).

methods
Methods and any associated references are available in the online 
version of the paper.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Data collection. We collected 190,428 experimentally vali-
dated human phosphosites from three online databases 
(PhosphoSitePlus12, PhosphoELM13, HPRD14) after excluding  
duplicates and sites without annotated literature reference. 
Phosphosites were matched with exact sequence to longest  
isoforms of CCDS proteins, and ±7 flanking residues were 
retained as previously described11. Nonmatching phosphosites 
were discarded. Somatic missense single-nucleotide variants 
of 3,185 cancer samples and 12 cancer types from the TCGA 
pan-cancer project18 were retrieved from the Synapse database 
(http://www.synapse.org/; ID syn1729383). Matched expression 
data covering 3,468 samples and 17,461 genes from the TCGA 
were also obtained from Synapse (syn1695373). We discarded 
354 gene expression samples (10%) that were not included in the 
mutation data set. Cell component annotations of 15,372 proteins 
were obtained from UniProt24. Only top-level terms of the locali-
zation hierarchy were retained for maximum coverage.

Kinase specificity models. Kinase sequence specificities were 
modeled as position weight matrices (PWMs). We initially studied  
sequence specificities of 151 kinases and filtered the set to obtain 
124 high-confidence models (see “Performance”). A single  
PWM was constructed for each kinase using known binding 
sites. Let S be a set of n binding sites of a kinase, each of length 
m, s1,…,sn, where sk = sk1,…,skm and skj represents one of the 20 
amino acids. A PWM is a matrix M of size 20 × m with weights  
fij as relative frequencies of amino acid i at position j 

f
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The value ε is computed as the background probability of the amino 
acid multiplied by a pseudocount constant 0.01. Pseudocounts avoid 
infinite values and numerical problems when computing logarithms 
of frequencies, and they conservatively give higher preferences to 
the background model. Given a potential phosphosite sequence q  
of a kinase of length m, q1,…,qm, the relative frequencies fij were 
used to compute binding scores. We adapted the matrix similarity 
score (MSS) originally developed for the analysis of DNA sequences 
in the MATCH algorithm16. MSS uses information content of each 
sequence position and normalizes against the highest and lowest 
relative frequencies per position in the PWM. The minimum MSS, 0, 
represents the lowest possible binding score, whereas the maximum 
MSS, 1, corresponds to a perfect match sequence. MSS is defined in 
the following formulas 
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The value qj represents the amino acid at position j of the 
query sequence, fj

min and fj
max represent minimum and maxi-

mum relative frequency at position j of the PWM, respectively, 
and fb is the background frequency of a particular amino acid 
in the proteome. The central residue is discarded from scoring, 
as it would provide the strongest signal in the PWM and would 
mask signals in the flanking sequence. We separated kinases into 
two classes (serine/threonine and tyrosine kinases) on the basis 
of the majority of their reported binding sites, and we discarded 
sequences where the central residue mismatched the kinase class. 
Sequences with a central residue mismatching the PWM class 
were not. PWMs were constructed for kinases with at least ten 
binding sites. Kinases with fewer sites were removed as their 
PWMs proved too variable for informed predictions.

Refining kinase specificity models. To refine our kinase specifi-
city models, we iteratively discarded sequences with poor corre-
spondence to the PWM. The set of positive sequences S+ included 
all confirmed binding sites of a particular kinase, and the negative 
set S− included 10,000 15-mer sequences with central (eighth) 
residue of serine/threonine or tyrosine. The negative set was uni-
formly sampled from the proteome and excluded experimentally 
confirmed phosphosites. Although S− may include unexplored 
phosphorylation sites, it provides a proxy of true negative sites 
as only few experimentally confirmed nonphosphorylated sites 
are known. The S+ set was compiled into the initial PWM M0 
used to score the sets S+ and S−. To refine PWMs, we compared 
positive sequences to the score distribution of negative sequences 
and discarded positives that had scores similar to negatives. The 
S− distribution provided a threshold t as the 90th percentile, and 
sequences in S+ with score below t were discarded. The remain-
ing sequences in S+ were summarized as the new PWM M1.  
This process was repeated until no further sequences were  
discarded owing to all sequences in S+ achieving a score greater 
than t or to the refinement surpassing the lower bound of ten 
sequences per positive set.

Performance. We used tenfold cross-validation to assess the  
performance of our PWMs. The S+ set was randomly split into ten 
equal groups g1,…,g10. The first group g1 was used as the test set, 
and the remaining groups g2,…,g10 were summarized as a PWM. 
The PWMs were used to score known kinase binding sites in the 
test set and true negative sequences in a conservative negative set 
S#. In model evaluation, the negative set S# contained all experi-
mental phosphosite sequences annotated to the other kinase  
families3 excluding the family of the given kinase. This conserva-
tive approach selected kinase specificity models that discriminated 
kinase-specific phosphosites from other known phosphorylation 
sites. To evaluate model performance, we computed receiver  
operating characteristic (ROC) curves and area under curve  
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values (AUCs) from true positive rates (TPR) and false positive 
rates (FPR) as 

TPR
TP

TP FN
FPR

FP
FP TN

=
+

=
+

;

This procedure was repeated ten times with each group as a test 
set, and the AUC values were averaged over ten iterations. We 
used an AUC of >0.6 to filter PWMs classifying kinase-specific 
sites and sites of other kinases. This corresponds to an AUC >0.65 
of classifying true phosphosites from random nonphosphorylated 
sites (Supplementary Fig. 3). The filtering procedure resulted in 
124 high-confidence PWMs.

Predicting kinase binding and impact of mutations. To quantify 
kinase interactions with phosphosite sequences, we trained two 
Gaussian mixture models (GMMs) MP and MN to reflect MSS 
scores of true positive kinase-bound sequences and randomly 
sampled nonphosphorylated sequences, respectively. Negative 
sequences were centered on S, T or Y residues and sampled from 
the proteome exclusive of experimentally confirmed phosphosites. 
Mixture models M were fitted using model-based clustering in the 
mclust R package17 that infers an optimal number of components 
of the mixture M1,M2,…,Mn and their weights and parameters  
(means, s.d.) with maximum-likelihood estimation. For a given 
MSS score s, the probability density function of a GMM was  
computed as 

L L( | ) ( | )s M s M wi i
i

n
=

=
∑

1  

where L(s|Mi) is the likelihood or density of s in the component 
Mi of the mixture and wi is the weight of the ith component so 
that the mixture weights w1,w2,…,wn sum to 1. Given the learned 
parameters, mean µi and s.d. σi of each component, the likelihood 
was computed using the normal distribution as 
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To estimate probabilities of mutation-induced phosphoryla-
tion loss and gain, we computed Bayesian posterior probabili-
ties of positive MP and negative MN distributions given wild 
type sw and mutant sm scores. The posterior probability of the 
positive distribution MP given the wild-type sequence sw was 
computed as 

p M s
s M p M

s M p M s M p M
( | )

( | ) ( )
( | ) ( ) ( | ) ( )P w

w P P

w P P w N N
=

+
L

L L  

and p(MN|sw), p(MP|sm) and p(MN|sm) were derived similarly.  
The prior p(M) reflects our belief in the distribution M. We 
defined the prior of the positive distribution p(MP) as equal to 
the AUC of the corresponding kinase PWM and the prior of the 
negative distribution p(MN) equal to 1. The AUC quantifies the 
performance of the kinase PWM in classifying known binding 

sites from sites of other kinases and thus serves as a measure of 
confidence in the model.

A loss-of-phosphorylation event was defined as the joint 
probability of two events, the positive distribution being repre-
sentative of the wild-type sequence and the negative distribution 
being representative of the mutant sequence, and vice versa for  
phosphorylation gain 

p p M s p M s

p p M s p M s
loss P w N m

gain N w P

= ×
= ×

( | ) ( | )

( | ) ( | )m

By default, we consider the joint probabilities greater than 0.5 
to call network-rewiring mutations. Additionally, we compute 
fold changes in MSS scores of wild-type and mutant sequences 
∆ = abs[log2(sm/sw)] and employ a minimum threshold of ∆ ≥ 1 
to filter events with small differences between sw and sm. These 
parameters can be altered to fine-tune method performance.

Pathway analysis. We carried out a pathway enrichment analysis 
to evaluate cancer mutations with predicted rewiring of phos-
phosites. We tested 5,753 protein groups representing pathways 
and protein complexes of 4,580 proteins from the databases 
Reactome25 and CORUM26 obtained from the g:Profiler27 web 
server. Protein groups were filtered to exclude nonphosphor-
ylated proteins, small (n < 5 proteins) and large groups (n > 500),  
groups with few pSNVs (n < 2) and groups where only one gene 
was mutated. One-tailed Poisson exact tests were applied to 
identify groups with excessive network-rewiring pSNVs, using 
global average number of network-rewiring pSNVs per protein 
as expected rate. Observed network-rewiring pSNVs per group 
and number of proteins in the group were used to determine the 
significance of enrichment. Resulting P values were corrected for 
multiple testing with the Benjamini-Hochberg method for false  
discovery rate (FDR). We considered pathways significantly 
enriched for network-rewiring mutations with FDR P < 0.01. 
Results were visualized with the Enrichment Map app28 in 
Cytoscape (http://www.cytoscape.org/) and manually curated to 
identify functional themes.

MIMP implementation. MIMP is implemented as a web server 
and an R package with precomputed kinase specificity models for 
individual kinases and kinase families. MIMP requires two inputs 
to predict network-rewiring pSNVs in phosphorylation: muta-
tion data of single amino acid substitutions and protein sequence  
data in FASTA format. The third optional input file includes 
positions of phosphorylated residues in protein sequences. If no  
phosphorylation data are provided, MIMP uses all S,T and Y 
residues as potential phosphorylation sites. Users can adjust the 
posterior probability cutoff and score fold change to tune results 
and to choose between kinase-specific and family-wide specificity 
models for site prediction. Results are returned in a table with 
lists of mutations and their impact on binding sites, phosphosite 
positions, and wild type and mutant sites. Browser visualization 
in the web server and R package enables easier navigation of 
results: for example, by sorting columns, filtering rows and visu-
alizing motifs. MIMP is available at http://mimp.baderlab.org/.  
Installation instructions of the R package, documentation and 
sample data are available online.
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Experimental validation. To validate predictions of network-
rewiring mutations, in vitro kinase binding assays were carried 
out by the Kinexus Bioinformatics Corporation. Assay conditions 
for protein kinases were optimized to yield acceptable enzymatic 
activity and to give high signal-to-noise ratios. Recombinant pro-
tein kinases for substrate profiling were cloned, expressed and 
purified using proprietary methods. Quality control was carried 
out on all kinases to ensure compliance with acceptable standards. 
Gamma phosphate–labeled ATP ([γ-33P]ATP) was purchased 
from PerkinElmer. All other materials were standard laboratory 
grade. Peptide substrates with 90–98% purity were synthesized 
by Kinexus (Supplementary Table 1). Kinase activities toward 
their substrates were profiled with radioisotope assays. Double 
replicates of assays were performed at ambient temperature for 
20–40 min in a final volume of 25 µl, including 5 µl of diluted 
active protein kinase (~10–50 nM final protein concentration in 
the assay), 5 µl of assay solution of test substrate, 10 µl of kinase 

assay buffer, and 5 µl of [γ-33P]ATP (250 µM stock solution,  
0.8 µCi). Assays were initiated by adding [γ-33P]ATP, which 
was followed by incubation of reaction mixture at ambient  
temperature for 20–40 min, depending on the protein kinase 
tested. Assays were terminated after the incubation period by 
spotting 10 µl of the reaction mixture onto a multiscreen phos-
phocellulose P81 plate. The plate was washed three times for  
15 min each in a 1% phosphoric acid solution. Radioactivity  
of the plate was counted in the presence of scintillation fluid  
with a Trilux scintillation counter.

24. Magrane, M. Database 2011, bar009 (2011).
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